

 Navigation

 	
 index

 	
 modules |

 	Requirements-Builder 0.2.0 documentation

Requirements-Builder

 [https://travis-ci.org/inveniosoftware/requirements-builder]
 [https://coveralls.io/r/inveniosoftware/requirements-builder]
 [https://github.com/inveniosoftware/requirements-builder/releases]
 [https://pypi.python.org/pypi/requirements-builder]
 [https://github.com/inveniosoftware/requirements-builder/blob/master/LICENSE]
About

Build requirements from setup.py to test your package against minimum,
latest and development versions of your package dependencies. Particularly
useful when combined with your CI systems build matrix.

Installation

Requirements-Builder is on PyPI so all you need is:

$ pip install requirements-builder

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv requirements-builder
$ pip install requirements-builder

Testing

Running the test suite is as simple as:

$./run-tests.sh

Usage

Build requirements files from setup.py requirements.

$ requirements-builder --help
Usage: requirements-builder [OPTIONS] SETUP

 Calculate requirements for different purposes.

Options:
 -l, --level [min|pypi|dev] Specifies desired requirements level."min"
 requests the minimal requirement that is
 specified, "pypi" requests the maximum version
 that satisfies the constrains and is available
 in PyPi. "dev" includes experimental developer
 versions for VCSs.
 -e, --extras TEXT Comma separated list of extras.
 -r, --req PATH Requirements file.
 --help Show this message and exit.

TravisCI

Following is an example of how to integrate Requirements-Builder with
TravisCI:

env:
 - REQUIREMENTS=lowest
 - REQUIREMENTS=release
 - REQUIREMENTS=devel

python:
 - "2.7"
 - "3.3"
 - "3.4"
 - "3.5"

before_install:
 - "travis_retry pip install --upgrade pip"
 - "travis_retry pip install requirements-builder"
 - "requirements-builder --level=min setup.py
 > .travis-lowest-requirements.txt"
 - "requirements-builder --level=pypi setup.py
 > .travis-release-requirements.txt"
 - "requirements-builder --level=dev --req requirements-devel.txt setup.py
 > .travis-devel-requirements.txt"

install:
 - "travis_retry pip install -r .travis-$REQUIREMENTS-requirements.txt"
 - "pip install -e ."

API Reference

Generate requirements from setup.py and requirements-devel.txt.

	
requirements_builder.requirements_builder.iter_requirements(level, extras, pip_file, setup_fp)[source]

	Iterate over requirements.

	
requirements_builder.requirements_builder.minver_error(pkg_name)[source]

	Report error about missing minimum version constraint and exit.

	
requirements_builder.requirements_builder.parse_pip_file(path)[source]

	Parse pip requirements file.

	
requirements_builder.requirements_builder.parse_set(string)[source]

	Parse set from comma separated string.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/requirements-builder/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Requirements-Builder could always use more documentation, whether as part of the
official Requirements-Builder docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/inveniosoftware/requirements-builder/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up requirements-builder for local development.

	Fork the requirements-builder repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/requirements-builder.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv requirements-builder
$ cd requirements-builder/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass tests, including testing other Python versions with tox:

$./run-tests.sh
$ tox

The tests will provide you with test coverage and also check PEP8
(code style), PEP257 (documentation), flake8 as well as build the Sphinx
documentation and run doctests.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests and must not decrease test coverage.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4, 3.5 and for PyPy. Check
https://travis-ci.org/inveniosoftware/requirements-builder/pull_requests
and make sure that the tests pass for all supported Python versions.

Changes

Version 0.2.0 (released 2016-09-13)

New features

	Adds an output option which is useful in the tox context where one
cannot redirect the output to a file. See more at
https://bitbucket.org/hpk42/tox/issues/73/pipe-output-of-command-into-file

Bug fixes

	Fixes problem when the setup.py command try to import the package
its about to install in order to get the information like the
version. E.g. Django does that.

	Fixes problem when the setup.py command plays with __file__ to
read, exec, or whatever.

Version 0.1.0 (released 2015-10-05)

	Initial public release

License

Requirements-Builder is free software; you can redistribute it and/or
modify it under the terms of the Revised BSD License; see LICENSE
file for more details.

Copyright (C) 2015, CERN
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Authors

	Jiri Kuncar <jiri.kuncar@cern.ch>

	Lars Holm Nielsen <lars.holm.nielsen@cern.ch>

	Marco Neumann <marco@crepererum.net>

	Tibor Simko <tibor.simko@cern.ch>

	Yoan Blanc <yoan@dosimple.ch>

 Copyright 2015, CERN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Requirements-Builder 0.2.0 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 requirements_builder	

 	
 	
 requirements_builder.requirements_builder	

 Copyright 2015, CERN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Requirements-Builder 0.2.0 documentation

Index

 I
 | M
 | P
 | R

I

 	

 	iter_requirements() (in module requirements_builder.requirements_builder)

M

 	

 	minver_error() (in module requirements_builder.requirements_builder)

P

 	

 	parse_pip_file() (in module requirements_builder.requirements_builder)

 	

 	parse_set() (in module requirements_builder.requirements_builder)

R

 	

 	requirements_builder (module)

 	

 	requirements_builder.requirements_builder (module)

 Copyright 2015, CERN.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Requirements-Builder 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, CERN.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Requirements-Builder 0.2.0 documentation »

 All modules for which code is available

		requirements_builder.requirements_builder

 © Copyright 2015, CERN.
 Created using Sphinx 1.3.5.

_modules/requirements_builder/requirements_builder.html

 Navigation

 		
 index

 		
 modules |

 		Requirements-Builder 0.2.0 documentation »

 		Module code »

 Source code for requirements_builder.requirements_builder

-*- coding: utf-8 -*-
#
This file is part of Requirements-Builder
Copyright (C) 2015, 2016 CERN.
#
Requirements-Builder is free software; you can redistribute it and/or
modify it under the terms of the Revised BSD License; see LICENSE
file for more details.

"""Generate requirements from `setup.py` and `requirements-devel.txt`."""

from __future__ import absolute_import, print_function

import os
import re
import sys

import mock
import pkg_resources
import setuptools

[docs]def parse_set(string):
 """Parse set from comma separated string."""
 string = string.strip()
 if string:
 return set(string.split(","))
 else:
 return set()

[docs]def minver_error(pkg_name):
 """Report error about missing minimum version constraint and exit."""
 print(
 'ERROR: specify minimal version of "{}" using '
 '">=" or "=="'.format(pkg_name),
 file=sys.stderr
)
 sys.exit(1)

[docs]def parse_pip_file(path):
 """Parse pip requirements file."""
 # requirement lines sorted by importance
 # also collect other pip commands
 rdev = dict()
 rnormal = []
 stuff = []

 try:
 with open(path) as f:
 for line in f:
 line = line.strip()

 # see https://pip.readthedocs.org/en/1.1/requirements.html
 if line.startswith('-e'):
 # devel requirement
 splitted = line.split('#egg=')
 rdev[splitted[1].lower()] = line

 elif line.startswith('-r'):
 # recursive file command
 splitted = re.split('-r\\s+', line)
 subrdev, subrnormal, substuff = parse_pip_file(splitted[1])
 for k, v in subrdev.iteritems():
 if k not in rdev:
 rdev[k] = v
 rnormal.extend(subrnormal)
 elif line.startswith('-'):
 # another special command we don't recognize
 stuff.append(line)
 else:
 # ordenary requirement, similary to them used in setup.py
 rnormal.append(line)
 except IOError:
 print(
 'Warning: could not parse requirements file "{}"!',
 file=sys.stderr
)

 return rdev, rnormal, stuff

[docs]def iter_requirements(level, extras, pip_file, setup_fp):
 """Iterate over requirements."""
 result = dict()
 requires = []
 stuff = []
 if level == 'dev':
 result, requires, stuff = parse_pip_file(pip_file)

 with mock.patch.object(setuptools, 'setup') as mock_setup:
 sys.path.append(os.path.dirname(setup_fp.name))
 g = {'__file__': setup_fp.name}
 exec(setup_fp.read(), g)
 sys.path.pop()
 assert g['setup'] # silence warning about unused imports

 # called arguments are in `mock_setup.call_args`
 mock_args, mock_kwargs = mock_setup.call_args
 requires = mock_kwargs.get('install_requires', [])

 requires_extras = mock_kwargs.get('extras_require', {})
 for e in extras:
 if e in requires_extras:
 requires.extend(requires_extras[e])

 for pkg in pkg_resources.parse_requirements(requires):
 # skip things we already know
 # FIXME be smarter about merging things
 if pkg.key in result:
 continue

 specs = dict(pkg.specs)
 if (('>=' in specs) and ('>' in specs)) \
 or (('<=' in specs) and ('<' in specs)):
 print(
 'ERROR: Do not specify such weird constraints! '
 '("{}")'.format(pkg),
 file=sys.stderr
)
 sys.exit(1)

 if '==' in specs:
 result[pkg.key] = '{}=={}'.format(
 pkg.project_name, specs['=='])

 elif '>=' in specs:
 if level == 'min':
 result[pkg.key] = '{}=={}'.format(
 pkg.project_name,
 specs['>=']
)
 else:
 result[pkg.key] = pkg

 elif '>' in specs:
 if level == 'min':
 minver_error(pkg.project_name)
 else:
 result[pkg.key] = pkg

 else:
 if level == 'min':
 minver_error(pkg.project_name)
 else:
 result[pkg.key] = pkg

 for s in stuff:
 yield s

 for k in sorted(result.keys()):
 yield str(result[k])

 © Copyright 2015, CERN.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

